Telegram Group & Telegram Channel
Допустим, вам надо предсказать доход человека. У вас есть все необходимые признаки, а данных достаточно. После построения модели как вы определите, что она получилась хорошей?

Чтобы оценить, что построенная модель для предсказания доходов человека получилась хорошей, нужно сделать следующее:

▪️Выбрать метрику качества модели: MAE (Mean Absolute Error), MSE (Mean Squared Error) или RMSE (Root Mean Squared Error). Она поможет понять, насколько точно модель предсказывает целевую переменную.

▪️Разделить имеющиеся данные на две части — обучающую и тестовую выборки. Обучающая выборка используется для построения модели, а тестовая — для оценки её качества. Это необходимо для предотвращения переобучения, когда модель хорошо работает на обучающих данных, но плохо на новых примерах.

▪️После построения модели на обучающих данных следует проверить её качество на тестовых данных. Если значения метрик на обучающей и тестовой выборках не сильно различаются, это указывает на то, что модель не переобучилась и способна давать хорошие предсказания.

▪️Дополнительно можно использовать кросс-валидацию для более точной оценки стабильности модели. Это поможет удостовериться, что модель демонстрирует хорошие результаты на различных подвыборках данных.

#машинное_обучение
👍9



tg-me.com/ds_interview_lib/462
Create:
Last Update:

Допустим, вам надо предсказать доход человека. У вас есть все необходимые признаки, а данных достаточно. После построения модели как вы определите, что она получилась хорошей?

Чтобы оценить, что построенная модель для предсказания доходов человека получилась хорошей, нужно сделать следующее:

▪️Выбрать метрику качества модели: MAE (Mean Absolute Error), MSE (Mean Squared Error) или RMSE (Root Mean Squared Error). Она поможет понять, насколько точно модель предсказывает целевую переменную.

▪️Разделить имеющиеся данные на две части — обучающую и тестовую выборки. Обучающая выборка используется для построения модели, а тестовая — для оценки её качества. Это необходимо для предотвращения переобучения, когда модель хорошо работает на обучающих данных, но плохо на новых примерах.

▪️После построения модели на обучающих данных следует проверить её качество на тестовых данных. Если значения метрик на обучающей и тестовой выборках не сильно различаются, это указывает на то, что модель не переобучилась и способна давать хорошие предсказания.

▪️Дополнительно можно использовать кросс-валидацию для более точной оценки стабильности модели. Это поможет удостовериться, что модель демонстрирует хорошие результаты на различных подвыборках данных.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/462

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Telegram Be The Next Best SPAC

I have no inside knowledge of a potential stock listing of the popular anti-Whatsapp messaging app, Telegram. But I know this much, judging by most people I talk to, especially crypto investors, if Telegram ever went public, people would gobble it up. I know I would. I’m waiting for it. So is Sergei Sergienko, who claims he owns $800,000 of Telegram’s pre-initial coin offering (ICO) tokens. “If Telegram does a SPAC IPO, there would be demand for this issue. It would probably outstrip the interest we saw during the ICO. Why? Because as of right now Telegram looks like a liberal application that can accept anyone - right after WhatsApp and others have turn on the censorship,” he says.

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

Библиотека собеса по Data Science | вопросы с собеседований from id


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA